If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+15x=44
We move all terms to the left:
x^2+15x-(44)=0
a = 1; b = 15; c = -44;
Δ = b2-4ac
Δ = 152-4·1·(-44)
Δ = 401
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-\sqrt{401}}{2*1}=\frac{-15-\sqrt{401}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+\sqrt{401}}{2*1}=\frac{-15+\sqrt{401}}{2} $
| −2w−28=2w | | 30x=14.4 | | 3.3-0.8x=1.7 | | 4(3+x)=4(4x-1)-68 | | 90=x+8(3x-10) | | -8c+3c=20 | | 14e=13 | | 1.3(7-b)+3.7b=-5.2 | | -129=3(7-6p) | | -5/8=-34a | | -129=3(7-6p | | 8x+10-4x=12-13x-14 | | -5r+-35=-58 | | 36.31=7g+3.97 | | 2(2x+5)=3 | | -5(2x+14)=-2(x+63) | | X^2+10x+24^2=0 | | 3x-10(x+8)=90 | | 11-9n=-37-5n | | -5x-(1+7)=-8 | | 6z+7-4z=61-4z | | -8=(1/3)x+x | | 5x+15-4x=-7-13 | | 9e=10+8e | | D=9/5(m-85) | | X/5x=1.5 | | X2+10x+24^2=0 | | 4x+2(5-x)=7(x-1)+3 | | −2x^2+16x−12=0 | | 15n-33=6n+6 | | 6s−4=8(2+0.25s) | | 6d(-11/2)=2d(-13/2) |